Department of Physics

Lesson Plan - B.Sc. I Year (July 2018 - Mar 2019) Subject - Physics

Paper-I

Teacher - Prof. Mahima Jain/Prof. Vinod Yadav Topic

		Teacher - Prof. Mahima Jain/Prof. Vinod Yadav
Day/Lecture	Unit	Торіс
1	1	Scalar and vector physical quantities, Representation of a vector, Graphical repersentation of a vector.
2	Mathematical	Some specific vector, unit vector, Zero vector, position vector, displacement vector, Polar vector, axial vector.
3	Physics	Addition of vector, law of triangle of addition of vector, law of parallelogram of vector addition.
4		Equivalence of triangle law with parallelogram law of vector addition.
5		Magnitude and directions of resultant vector by the law of parallelogram of addition.
6		Polygon law of addition of more then two vector, properties of vector addition, subtraction of vector.
7		Resolution of a vector, resolution of a 2-D vector, resolution of a 3-D vector.
8 9		Product of a vertor with ascalar, product of two vector, Dot or scalar product cross or vector product.
9 10		Product of three vector, scalar triple product, vector triple product.
11		Product of four vector, scalar and vector feld.
12		Differentiation of vector, line, surface and volume integrals.
13		Repeated integal of a function of more than one variable, unit radial and tangential or normal vector. Laplacian operator, vector intergration, line, surface and volume integral.
14		Gradient of a scalar field, physical significance of gradient, divergence of a vector field.
15		Physical signidicance of divergence ,Gauss divergence theorem,Green's theorem.
16		Curl of a vector field, physiccal significance of curl, stoke's theorem, solved examples.
17	2	State of rest and state of motion, distance and displacement, speed and velocity, accelaration and retardation, position velocity and acceleration vector.
18	Mechanics	Different coordinate system, cartesian coordinate system, plane polar coordinate system.
19		Spherical and cylindrical coordinate system velocity and acceleration in different coordinate system.
20		Newton's first, second and third law of motion, limitation of newton's laws, different forces in nature, gravitational , electromagnetic, nuclear and weak force
21		Inertial frame of reference, non inertial frame of reference, pseudo or fictitious force.
22		Coriolis force and its applications.
23		Equation of motion for a system of single particle, two particles and n-particles.

24		Centre of mass, motion of centre of mass
25		Central force and its propeties, motion of a system of two particles under a central force, concept of reduced mass.
26		Kepler's laws, derivation of first law of kepler.
27		Derivation of kepler's second and third law, derivation of law of gravitation frm kepler's law, gravitational law and gravitational field.
28		Gravitational potential energy and gravitational potential, relationship between gravitational force and gravitational potential energy, gravitational potential.
29		Gravitational potential and intensity of gravitational field due to a uniform spherical shell.
30		Gravitational potential and intensity of gravitational field due to a uniform solid sphere.
31		Gauss theroem in gravitation, gauss and poisson's equation, gravitational self energy, gravitational self energy of a uniform spherical shell and solid sphere.
32		Elastic and inelastic collisions, elastic in a laboratory frame.
33		Elastic collision in a centre of mass frame, Inelastic collsion,
34	3	Elasticity, effect of temperature and impurities on elasticity of a substance; stress and strain; hook's law.
35	General	Elasctic constants for an isotropic solid, young's modulus, steel is more elastic than rubber, to compare the elasticity of two substances; Bulk Modulus.
36	Properties of	Two bulk modulii of a gas, isothermal elasticity and adiabatic elasticity, Modulus of rigidity.
37	Matter	Poission's ratio; workdone in linear strain, volume strain and shear strain.
38		Relationship amongst the various elastic modulii; limiting value of poission's ratio,
39		Bending of beam and bending moment.
40		Cantilever;transverse oscillations of a cantilever;A beam supported at its ends and loaded in the middle,steel girders are of cross section.
41		Determination of Young's Modulus Y of material of beam by bending method,(1)By spherometer, (2)By optical lever Koenig arrangement.
42		Surface tension, explanation of surface tension on the bases of inter molecular forces, surface energy.
43		Angle of contact, effect of angle of contact, capillarity; energy required to raise a liquid in a capilliary tube ; effect of temperature and impurities on the surface tension.
44		Determination of a surface tenison of a liquid (1)By rise in a capillarity tube;(2) By Jaeger's method;applications of surface tension.
45		Ideal and viscous fluids; concept of viscous force and coefficient of viscocity; effect of pressure and temperature on the coefficient of viscocity.
46		StreamIne and turbolent flow; Reynold's number; equation of continuity; energy of a flowing fluid.
47		Bernoulli's theorem; applications based on bernilli's theorem (1) Velocity of efflux or toricelli's theorem.
48		Venturimeter, Aspirator pump, Change of plane of spinning ball or magnus effect, shape of the wings of an aeroplane, atomiser, dancing of ping pong ball on a water fountain.
49	4	Vibrational, periodic and simple harmonic motions, relationship between the period of vibration and frequency, conditions of simple harmonic motion.

50	Oscillations	Differential equations od simple harmonic oscillator and its solutions;Graphical representation of simple harmonic motion,displacement,velocity,acceleration of a particle in a simple harmonic motion.
51		Potential and kinetic energies in simple harmonic motion, average kinetic energy, average potential energy, graphical representation of potential energy and kinetic energy.
52		Oscillations of a mass connected with a anning assillation of two masses connected at a and of massless anning
		Oscillations of a mass connected with a spring; oscillastion of two masses connected at a end of massless spring.
53		Rigid body;transplatory and rotatory motion; rotatory motion of a rigid body,equations of rotational motion of a particle under a constant angular acceleration.
54		Newton's law of motion in rotational motion,work and power in rotational motion;M.I. and its physical significance, distinction between inertia and M.I., application of moment of inertia in daily life; radius of gyration.
55		Rotational kinetic energy in angular momentum, relationship between the angular momentum and rotational kinetic energy; principle of conservation of angular momentum.
56		Theorem of addition, theorem of perpendicular axis, theorem of parallel axis; calculation of moment of inertia of some regular and uniform bodies (1) Momentum of inertia of a uniform thin rod.
57		Momentum of inertia of a uniform rectangular lamina, uniform thin ring, uniform circular disk, uniform solid sphere, uniform hollow sphere.
58		Momentum of inertia of a uniform thick spherical shell, uniform solid cylinder, uniform hollow cylinder, thick cylindrical shell or flywheel.
59		Principal moment of inerti and principal axis, product of inertia, Euler's equations for motion of a rigid body.
60	5	Galilean transformations.
61	Relativistic	Michaelson-Morley's experiment.
62	Mechanics	Concept of special theory of relativity,Lorentz transformations,invariance of space time interval between the two events.
63		Contraction in a length, time dimension; simaltaneity of events and order of events.
64		Relativistic transformation of velocities, frequency and wave number.
65		
05		Relativistic addition of velocities; variation of mass with velocity.
66		Mass-energy equivalence, relationship between relativistic energy and relativistic momentum, particle with zero rest mass.
67	Earlier	Aryabhatt, Archimedes, Nicolas, Coppernicus, Galileo galilei, Huygens, Robert Hooks, Toricelli, Pierre Verneir, Pascal
	Developments	
68	in Physics up	
	to	Newton,Boyle,Young,Thomson,Coulomb,Ampere,Gauss,
69	18th Century	Biot-Savarts, Cavendish, Galvani, Franklin, Bernoulli.

Department of Physics

Lesson Plan - B.Sc.I Year (July2018 - Mar 2019) Subject - Physics

Paper-II Teacher - Prof. Mahima Jain/Prof. Vinod Yadav Topic

Day/Lecture	e Unit	Topic
1	1	Reversible and irreversible process
2	Thermo dynamics-	Heat engine
3		definition of efficiency, Carnot's ideal heat engine
4		Carnot's cycle, effective way to increase efficiency
5		Effective way to increase Carnot's engine and refrigerator
6		Coefficient of performance
7		Second law of thermodynamics
8		Various statement of second of second law of thrmodynamics
9		Carnot's theorem
10		Clapeyron's latent heat equation.

11		Carnot's cycle and its application
12		Steam engine
13		Otto engine
14		Diesel engine
15	2	Concept of entropy
16	Thermodynamics-	I Change in entropy in adiabatic process
17		Change in entropy in reversible cycle
18		Principle of increase of entropy
19		Change in entropy in irreversible process
20		T-S diagram, physical significance of entropy
21		Entropy of a perfect gas
22		Kelvin's thermodynamic scale of temperature
23		The size of zero degree, Zero of absolute scale
24		Identity of a perfect gas scale and absolute scale
25		Third law of thermodynamics, zero point energy
26		Negative temperature, Heat death of the universe.

27		Relation between thermodynamic variables (Maxwell's relation)
28		Relation between thermodynamic variables (Maxwell's relation)
29	3	Significance of ststistical approach
30	Statistical	Particle-states, System-states
31	Physics-I	Micro-states and Macro-states of the system
32		Equilibrium states, Fluctuations
33		Classical and statistical probability
34		The equi-probability postulate
35		Statistical ensemble
36		Number of states accessible to a system
37		Phase space
38		Micro canonical ensemble
39		canonical ensemble
40		Helmholtz free energy, Enthalpy

41		First law of thermodynamics
42		Gibbs free energy
43		Grand canonical ensemble
44	4	Phase space
45	Statistical	The probability of a distribution
46	Physics-II	The most probable distribution and its narrowing with increase in number of particles
47		Maxwell-Boltzmann statistics
48		Molecular speed distribution and mean, r.m.s. and most probable velocity
49		Constraints of accessible and inaccessible states
50		Partition function, relation between partition function and entropy
51		Bose-Einstein statistics
52		Black-body radiation
53		The Rayleigh-Jeans formula
54		The Planck radiation formula
55		Fermi-Dirac statistics
56		Comparison of result
57		Concept of phase transitions
58	5	S.N. Bose, M.N. Saha
59	Contribution of	Maxwell, Clausius, Boltzmann
60	Physicists	Joule, Wien, Einstein
61		Planck, Bohr
62		Heisenberg, Fermi
63		Dirac, Max Born, Bardeen

Department of Physics

Lesson Plan - B.Sc.I Year (July 2018- Mar 2019)

Subject - Physics Practical

Teacher - Prof. Mahima Jain/Prof. Vinod Yadav

Name of Practicals

S. N.

- 1 To determine radius and diameter of one rs. two rs. and five rs. Coins .
- 2 To determine radius and diameter of different type of wires .
- 3 To detrmine modulus of rigidity of wire with the help of Torisional pendulum .
- 4 To detrmine modulus of rigidity of wire with the help of Maxwell's needle .
- 5 To detrmine modulus of rigidity of wire with the help of Inertia table
- 6 To determine moment of inertia of irregular body with the help of regular body.
- 7 To verify perpendicular axes theorem .
- 8 To determine Young's modulus of rigidity of Cantelever beam .
- 9 To verify Newton's law of cooling.
- 10 Draw a probability distribution curve .
- 11 To determine acceleration due to gravity with the help of simple pendulum .
- 12 To determine acceleration due to gravity with the help of bar pendulum .
- 13 To determine Poisson's ratio of rubber .
- 14 To determine coefficient of viscosity of glycerene with the help of Stoke's method .

Department of Physics

Lesson Plan - B.Sc. II Year (July 2018- Mar 2019)

Subject - Physics

Paper-I

Teacher - Prof. Mahima Jain/Prof. Vinod Yadav

Day/Lecture	Unit	Торіс
1	1	Reflaction and refraction, Fermat's principle
2	Geometrical Optics	Refraction at a spherical surface
3		Aplanatic points and its applications
4		Lens formula
5		Combination of thin lenses and equivalent focal length
6		Dispersion and dispersive power
7		Chromatic aberration and achromatic combination
8		Different types of aberration and their remedy
9		Need for multiple lenses in eyepieces
10		Ramsden eyepiece
11		Huygens eyepiece
12	2	The principle of superposition, Two slit interference
13	Interference of Light	Coherence requirement for the sources
14		Optical path retardations, Lateral shift of fringes
15		Rayleigh refractometer and other applications
16		Localised fringes, thin films
17		Interference by a film with two non-parallel reflecting surfaces

18		Newton's rings
19		Haidinger fringes
20		Michelson interferometer
21		Its application for precision determination of wavelength
22		Wavelength difference and the width of spectral lines
23		Intesity distribution in multiple beam interference
24		Fabry-Parot interferometer and Etalon
25	3	Fresnel's theory of half periiod zone
26	Diffraction	Diffraction at straight edge
27		Rectilinear propagation
28		Diffraction at a slit
29		phasor diagram and integral calculus method
30		Diffraction at a circular apperture and a circular disc
31		Rayleigh criterion of resolution of images
32		Resolving power of telescope
33		Resolving power of microscope
34		Face contrast microscopy
35		Diffraction at N-parallel slits

36		Intensity distribution, plane diffraction grating
37		Resolving power of a grating
38		Comparison with resolving power of a prism and of a Fabry-Parot etalon
39	4	Tansverse nature of light waves, polarisation of electromagnetic waves
40	Polarisation	Plane polarised light-production and analysis
41		Discription of linear ,circular and electrical polarisartion
42		Propogation of electromagnetic waves in anistropic media
43		Uniaxial and biaxial crystals
44		Symmetric nature of dielectric denser
45		Double refraction ,Huygen's principle
46		Ordinary and extra ordinary refractive indices
47		Fresnel's formula
48		Light propogation in uniaxial crystal
49		Nicol prism
50		Production of a circularly and eliptically polarised light

51		Babinet compensator and applications, Optical rotations
52		Optical rotations in liquids and its measurement through polarimeter
53	5	A brief history of laser
54	Lasers and	Characteristic of laser light
55	Photo Sensors	Einstein's prediction, relationship between Einstein's coefficients
56		Pumping scheme, resonators
57		Ruby laser
58		Helium-Neon laser
59		Applications of lasers
60		Principle of holography
61		Photo diode
62		Photo transitors and photo multipliers

Department of Physics

Lesson Plan - B.Sc. V Sem (July 2018 - Dec 2018)

Subject - Physics

Teacher - Prof. Mahima Jain/ Prof. Vinod Yadav

Day/Lecture	Unit	Торіс
1	1	Photo electric effect
2	Quantum	
	Mechanics-I	Black body radiation
3		Compton effect
4		De-Broglie hypothesis
5		Wave Particle duality, Davisson-Germer experiment
6		Wave packets, Concept of phase and group velocity
7		Two slit experiment with electrons, probability
8		Wave amplitude and wave functions
9		Heisenberg's uncertainity principle with illustrations
10		Basic postulates and formalism of Schrondinger's equation
11		Eigen values
12		Probablistic interpretation of wave function
13		Equation of continuity
14		Probability current density
15		Boundary condition on the wave function
16		Normalization of wave function
17	2	1-D potential well
18	Quantum	
10	Mechanism-II	1-D potential barrier
19		Boundary conditions, Bound and unbound state
20		Reflection coefficients for a rectangular barrier in one dimension

21		Transmission coefficients for a rectangular barrier in one dimension
22		Explanation of alpha decay
23		Quantum phenomenon of tunneling
24		Free particle in 1-D box
25		Eigen functions of a free particle
26		Eigen values of a free particle
27		1-D simple harmonic oscillator
28		Energy eigen values from Harmite differential equation
29		Wave function for ground state
30		Particle in spherical symmetric potential
31		Rigid rotator
32	3	Atoms in electric and magnetic fields
33	Atomic	
55	Spectroscopy	Quantum numbers, Bohr model
34		Selection rules, Stern-Gerlach experiment
35		Spin as an intrinsic quantum number
36		Incompatibility of spin with classical ideas
37		Orbital angular momentum
38		Fine structure, total angular momentum
39		Pauli's exclusion principle
40		Many particles in a 1-D box
41		Symmetric and anti symmetric wave functions
42		Atomic shell moddel
43		Spectral notations for atomic states
44		Spin -orbit coupling
45		L-S and j-j coupling
46		Zeeman's effect
47		Continuous and characteristic X-rays
48		Mosley's law
49	4	Various types of spectra, rotational spectra
50	Molecular	
50	spectroscopy	Intensity of spectral lines
51		Determination of bond distance of diatomic molecules, isotope effect
52		Vibrational energies of diatomic molecules

53		Zero point energies, anharmonicity
54		Morse potential
55		Raman effect, Stoke's and anti-stoke's line and their intensity difference
56		Electronic spectra, Born-Oppenheimer approximantion
57		Franck-Condon principle
58		Singlet and triplet states
59		Fluorescence and phosphorescence
60	5	Basic properties of nucleus, shape, size, mass and charge of the nucleus
61	Nuclear Physics	Stability of the nucleus and binding energy
62		Alpha particles spectra-velocity and energy of alpha particles
63		Geiger-Nuttall law, nature of beta ray spectrum
64		electron capture
65		Selection rules, beta absorption and range of beta particles
66		Kurie plot, nuclear reactions, pair production
67		Q-values and threshold of nuclear reactions, nuclear reaction cross-sections
68		Examples of different types of reactions and their characteristics
69		Compound nucleus, Bohr's poastulate of compound nuclear reaction
70		Semi empirical mass formula
71		Shell model, liquid drop model
72		Nuclear fission and fusion (concepts)

Department of Physics

Lesson Plan - B.Sc.V sem (July 2018 - Nov 2018)

Subject - Physics Practical

Teacher - Prof. Mahima Jain/Prof. Vinod Yadav

Name of Practical

- 1 To determine the Planck's constant
- 2 Determination of e/m using Thomson's method
- 3~ To draw the B-H curve with the help of CRO and find its area.
- 4 To study the half wave rectifier.
- 5 To study the full wave rectifier.
- 6 To study variation of megnetic field with distance
- 7 To determine megnetic moment of megnet (M) with the help of vibration megnetometer.
- 8 To determine Horizontal component of earth (H) with the help of vibration megnetometer and tangent galvanometer.
- 9 To determine the value of Stefan's constant.
- 10 To draw the Thermistor characteristics.

S.N.

Department of Physics Subject - Physics

Day/Lecture	Unit	Торіс
1	1	Crystalline and amorphous solids
2	Solid State	Translational symmetry
3	Physics-I	Lattice and Basis
4		Unit cell ,reciprocal lattice
5		Fundamental types of lattice (Bravias lattice)
6		Miller Indices, lattice plane
7		Simple cubic, face centered cubic
8		Body centered cubic lattices
9		Laue and Bragg's equations
10		Determination of crytal structure with X-rays
11		X-ray spectrometer
12		Ionic,covalent,metallic
13		Vander waals and hydrogen bonding
14		Band theory of solids
15		Periodic potential and Bloch theorem
		•

16		Kronig-Penny model
17	2	Dulong-Petit theory of specific heat of solids
18	Solid State	Einstein's theory of specific heat of solids
19	Physics-II	Debye theory of specific heat of solids
20		Elastic and atomic force constants
21		Dynamic of a chain of similar atoms and chain of two types of atoms
22		Optical and acoustic modes
23		Electrical resistivity, specific heat of electron
24		Wiedemann-Franz law
25		Hall effect
26		Response of substance in diamagnetic field material
27		Response of substance in paramagnetic field material
28		Response of substance in ferromagnetic field material
29		Classical Langevin theory of diamagnetic domains
30		Classical Langevin theory of paramagnetic domains
31		Curie's law, Weiss's theory of ferromagnetism domains
32		Weiss's theory of ferromagnetic domains

33		Discussion of B-H hysterisis
34	3	Types of semiconductor (p and n)
35	Semiconductor	Formation of energy bands
36	Devices-I	Energy level diagram
37		Conductivity and mobility
38		Junction formation, Barries formation in p-n junction diode
39		Current flow mechanism in forward and reverse biased diode
40		Drift and saturation of drift velocity
41		Derivation of mathematical equations for Barrier potential and barrier width
42		Single p-n junction devices and its physical explanation
43		Current voltage and characteristics of single p-n junction device and its application
44		
45		Two terminal devices
		Rectification,Zener diode,Photo diode
46		Light emitting diode, Solar cell
47		Three terminal devices, junction field effect transistor(JFET)
48		Two junction devices, transistor as p-n-p and n-p-n
49		Physical mechanism of current flow
50		Characteristics of transisator
51	4	Amplifiers,CB configurations
52	Semiconductor	CE and CB configurations
53	Devices-II	Single stage CE amplifier
54		Q-point equivalent circuit
55		Input impedance and output impedance
56		Volatge and current gain, Class A, B, C amplifiers

57		R-C coupled amplifier
58		Class B push pull amplifiers, feedback amplifiers
59		Voltage feedback and current feedback
60		Effect of negative voltage series feedback on input and output impedance and gain
61		Stability, destrotion and noise
62		Principle of an oscillator, Bark-Hausen criterion
63		Colpitts,R-C phase shift oscillators
64		Basic concepts of amplitude
65		Frequency and phase, modulations amd demodulation
66	5	Introduction to nano technology
67	Nano Material	Structure and size dependent particles
68		3-D,2-D,1-D,0-D nano structure materials and their density of states
69		Surface and interface effects
70		Modelling of quantum size effect
71		Synthesis of nano particles-bottom up and top down approach
72		Wet chemical method
73		Nano lithography
74		Metal and semiconducting nano materials
75		Naturally occuring nano crystals
76		Applications of nano materials

Department of Physics

Lesson Plan - B.Sc.VI sem (Jan2019- April 2019)

Subject - Physics Practical

Teacher - Prof. Mahima Jain/Prof. Vinod Yadav Name of Practicals

S. N.

- 1 To draw the characreristics of Silicon and Germanium diode .
- 2 To draw the characreristics of Zener diode .
- 3 To draw the characteristics of Light Emitting Diode .
- 4 To draw the characteristics of Tunnel Diode .
- 5 To draw the characteristics of regulated power supply using Zener Diode .
- 6 To draw the characteristics of regulated power supply using Transistor .
- 7 To draw the characteristics of unregulated power supply .
- 8 To determine Band gap of semiconductor diode .
- 9 To determine Planck's constant .
- 10 To draw input characteritics of NPN transistor in CE mode
- 11 To draw output characteritics of NPN transistor in CE mode
- 12 To draw output characteritics of PNP transistor in CE mode
- 13 To draw input characteritics of PNP transistor in CE mode
- 14 To draw the characteristics of Field Effect Transistor.